. (2010). Proton migration mechanism for operational instabilities in organic field-effect transistors. Physical Review B, 82(7), 075322-1/11. [075322]. DOI: 10.1103/PhysRevB.82.075322
DOI:10.1103/PhysRevB.82.075322
Document status and date:Published: 01/01/2010
Document Version:Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)
Please check the document version of this publication:• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.• The final author version and the galley proof are versions of the publication after peer review.• The final published version features the final layout of the paper including the volume, issue and page numbers.
Link to publication
General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.• You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement: Organic field-effect transistors exhibit operational instabilities involving a shift of the threshold gate voltage when a gate bias is applied. For a constant gate bias the threshold voltage shifts toward the applied gate bias voltage, an effect known as the bias-stress effect. Here, we report on a detailed experimental and theoretical study of operational instabilities in p-type transistors with silicon-dioxide gate dielectric both for a constant as well as for a dynamic gate bias. We associate the instabilities with a reversible reaction in the organic semiconductor in which holes are converted into protons in the presence of water and a reversible migration of these protons into the gate dielectric. We show how redistribution of charge between holes in the semiconductor and protons in the gate dielectric can consistently explain the experimental observations. Furthermore, we show how a shorter period of application of a gate bias leads to a faster backward shift of the threshold voltage when the gate bias is removed. The proposed mechanism is consistent with the observed acceleration of the bias-stress effect with increasing humidity, increasing temperature, and increasing energy of the highest molecular orbital of the org...