Charting Regions of Cobalt’s Chemical Space with Maximally Large Magnetic Anisotropy: A Computational High-Throughput Study
Lorenzo A. Mariano,
Vu Ha Anh Nguyen,
Valerio Briganti
et al.
Abstract:Magnetic anisotropy slows down magnetic relaxation and plays a prominent role in the design of permanent magnets. Coordination compounds of Co(II) in particular exhibit large magnetic anisotropy in the presence of low-coordination environments and have been used as single-molecule magnet prototypes. However, only a limited sampling of cobalt's vast chemical space has been performed, potentially obscuring alternative chemical routes toward large magnetic anisotropy. Here we perform a computational high-throughp… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.