Chemerin is a chemoattractant protein with adipokine properties encoded by the retinoic acid receptor responder 2 (RARRES2) gene. It has gained more attention over the past few years due to its multilevel impact on metabolism and immune responses. The pleiotropic actions of chemerin include chemotaxis of dendritic cells, macrophages and natural killers (NK) subsets, bactericidal activity as well as regulation of adipogenesis and glucose metabolism. Therefore, reflecting the pleiotropic actions of chemerin, expression of RARRES2 is regulated by a variety of inflammatory and metabolic mediators.However, for most cell types, the molecular mechanisms controlling constitutive and regulated chemerin expression are poorly characterized. Here we show that RARRES2 mRNA levels in murine adipocytes are upregulated in vitro and in vivo by acute-phase cytokines, IL-1 and OSM. In contrast to adipocytes, these cytokines exerted a weak, if any, response in mouse hepatocytes, suggesting that the effect of IL-1 and OSM on chemerin expression is specific to fat tissue. Moreover, we show that DNA methylation controls the constitutive expression of chemerin. Bisulfite sequencing analysis showed low methylation levels within -735 to +258 bp of the murine RARRES2 gene promoter in unstimulated adipocytes and hepatocytes. In contrast to these cells, the RARRES2 promoter is highly methylated in B lymphocytes, cells that do not produce chemerin. Together, our findings reveal previously uncharacterized mediators and mechanisms controlling chemerin expression in various cells.