The objective of this study was to characterize the properties of pulp and paper produced from tea (Camellia sinensis) wastes, an agricultural residue widely available in Turkey, using the kraft-anthraquinone (AQ) cooking method. The chemical components and fiber morphology of tea wastes were investigated. The results indicated that tea wastes had low holocellulose, cellulose, and α-cellulose contents and high lignin content. Also, the suitability of the fiber for pulp and paper production was examined, and the fiber length, fiber width, lumen diameter, and cell wall thickness were measured. According to these values, it was found that the strength properties of papers obtained from tea wastes were insufficient. Therefore, tea waste pulps were mixed with Turkish pine pulps at various ratios. Twelve different cooking experiments were performed on the tea wastes, and the cooking with the best pulp yield was used for mixing. The second cooking, with 0.1% AQ, gave the best yield (33.26%), an increase of about 3.51% compared to the first cooking with no AQ. The physical and optical properties of the papers were also examined. Results showed that paper properties were improved by increasing the Turkish pine pulp rate. Consequently, tea wastes can be used in pulp and paper production when combined with softwood pulps.