Polyelectrolytes (PEs) are widely used in applications such as water purification, wastewater treatment, and mineral recovery. Although much has been learned in past decades about the behavior of PEs in bulk aqueous solutions, their molecular behavior at a surface, and particularly an oil-water interface where many of their applications are most relevant, is largely unknown. From these surface spectroscopic and thermodynamics studies we report the unique molecular characteristics that several common polyelectrolytes, poly(acrylic acid) and poly(methylacrylic acid), exhibit when they adsorb at a fluid interface between water and a simple insoluble organic oil. These PEs are found to adsorb to the interface from aqueous solution in a multistepped process with a very thin initial layer of oriented polymer followed by multiple layers of randomly oriented polymer. This additional layering is thwarted when the PE conformation is constrained. The adsorption/desorption process is highly pH dependent and distinctly different than what might be expected from bulk aqueous phase behavior. macromolecular assembly | surface spectroscopy | water surfaces | hydrophobic surfaces | surfactants