Global warming enhances the rainfall and temperature irregularity, producing a collapse in water resources and generating an urgent need for hydro-sustainable thinking in agriculture. The aim of this study was to evaluate the correlation between the water stress of almond trees and quality parameters of fruits, after 3 years of experiments, with the objective of establishing quality markers necessary in the certification process of hydroSOStainable almonds. The results showed positive correlations among the stress integral (SI) and dry weight, color coordinates (L*, a* and b*), minerals (K, Fe, and Zn), organic acids (citric acid), sugars (sucrose, fructose, and total sugars), antioxidant activity, and fatty acids [linoleic acid, polyunsaturated (PUFA)/monounsaturated (MUFA) ratio, PUFA and SFA, among others]. As well as negative correlations of SI with water activity, weight (almond, kernel, and shell), kernel size, minerals (Ca and Mg), fatty acids (oleic acid, oleic/linoleic ratio, MUFA, and PUFA/SFA ratio), and sensory attributes (size, bitterness, astringency, benzaldehyde, and woody). Finally, this research helped to prove key quality parameters that can be used as makers of hydroSOStainable almonds. In addition, it was demonstrated that controlling water stress in almond trees by using deficit irrigation strategies can lead to appropriate yields, improve the product quality, and consequently, lead to a final added value.