Cell monolayers underpin the discovery and screening
of new drugs
and allow for fundamental studies of cell biology and disease. However,
current cryopreservation technologies do not allow cells to be stored
frozen while attached to tissue culture plastic. Hence, cells must
be thawed from suspension, cultured for several days or weeks, and
finally transferred into multiwell plates for the desired application.
This inefficient process consumes significant time handling cells,
rather than conducting biomedical research or other value-adding activities.
Here, we demonstrate that a synthetic macromolecular cryoprotectant
enables the routine, reproducible, and robust cryopreservation of
biomedically important cell monolayers, within industry-standard tissue
culture multiwell plates. The cells are simply thawed with media and
placed in an incubator ready to use within 24 h. Post-thaw cell recovery
values were >80% across three cell lines with low well-to-well
variance.
The cryopreserved cells retained healthy morphology, membrane integrity,
proliferative capacity, and metabolic activity; showed marginal increases
in apoptotic cells; and responded well to a toxicological challenge
using doxorubicin. These discoveries confirm that the cells are “assay-ready”
24 h after thaw. Overall, we show that macromolecular cryoprotectants
can address a long-standing cryobiological challenge and offers the
potential to transform routine cell culture for biomedical discovery.