2020
DOI: 10.48550/arxiv.2003.02722
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Chemical Bonding in Metallic Glasses from Machine Learning and Crystal Orbital Hamilton Population

Ary R. Ferreira

Abstract: The chemistry (composition and bonding information) of metallic glasses (MGs) is at least as important as structural topology for understanding their properties and production/processing peculiarities. This article reports a machine learning (ML)-based approach that brings an unprecedented "big picture" view of chemical bond strengths in MGs of a prototypical alloy system. The connection between electronic structure and chemical bonding is given by crystal orbital Hamilton population (COHP) analysis within the… Show more

Help me understand this report
View published versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 41 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?