Fire is a key ecological factor affecting plant dynamics. In the last few decades, fire occurrence in the Chaco region has increased noticeably, challenging the adaptive capacity of plants to regenerate after a fire. Broad-leaved forb species have been much less studied than woody and graminoids, although they are an important component of fire dynamics. Here we analysed the germination response to heat shock of 70 and 110°C, smoke and their combination in 10 broad-leaved herbaceous species frequently occurring in the Chaco Serrano of C ordoba province, central Argentina, including five annual (Bidens subalternans, Conyza bonariensis, Schkuhria pinnata, Tagetes minuta and Zinnia peruviana) and five perennial species (Borreria eryngioides, Sida rhombifolia, Solidago chilensis, Taraxacum officinale and Verbena litoralis). We also compared the response of annual versus perennial species. Six species had highest germination when treated with heat and smoke combined, whereas two had lowest germination under this treatment, indicating synergistic and antagonistic interaction of these factors respectively. Most of the species tolerated heat shock (i.e. germination was similar to that in control treatment), whereas others had higher germination in response to heat shock, especially under the moderate 70°C treatment. Germination was higher than control (i.e. no heat and no smoke) after smoke treatment in four species. Perennial species showed higher average germination than annuals in both heat treatments and in the control. Annual species had higher average germination for all treatments involving smoke. The high variability observed at the species level, and the limited number of species studied calls for precaution in interpreting and extrapolating results. Nevertheless, our study shows a general positive response of both perennial and annual species to fire cues, suggesting an advantage of these species for colonizing post-fire environments, and being favoured under scenarios of increasingly frequent low-to-medium intensity fires.