Zingiber montanum (Z. montanum) and Zingiber zerumbet (Z. zerumbet) are important medicinal and ornamental herbs in the genus Zingiber and family Zingiberaceae. Chloroplast-derived markers are useful for species identification and phylogenetic studies, but further development is warranted for these two Zingiber species. In this study, we report the complete chloroplast genomes of Z. montanum and Z. zerumbet, which had lengths of 164,464 bp and 163,589 bp, respectively. These genomes had typical quadripartite structures with a large single copy (LSC, 87,856-89,161 bp), a small single copy (SSC, 15,803-15,642 bp), and a pair of inverted repeats (IRa and IRb, 29,393-30,449 bp). We identified 111 unique genes in each chloroplast genome, including 79 protein-coding genes, 28 tRNAs and 4 rRNA genes. We analyzed the molecular structures, gene information, amino acid frequencies, codon usage patterns, RNA editing sites, simple sequence repeats (SSRs) and long repeats from the two chloroplast genomes. A comparison of the Z. montanum and Z. zerumbet chloroplast genomes detected 489 single-nucleotide polymorphisms (SNPs) and 172 insertions/deletions (indels). Thirteen highly divergent regions, including ycf1, rps19, rps18-rpl20, accD-psaI, psaC-ndhE, psbA-trnK-UUU, trnfM-CAU-rps14, trnE-UUC-trnT-UGU, ccsA-ndhD, psbC-trnS-UGA, start-psbA, petA-psbJ, and rbcL-accD, were identified and might be useful for future species identification and phylogeny in the genus Zingiber. Positive selection was observed for ATP synthase (atpA and atpB), RNA polymerase (rpoA), small subunit ribosomal protein (rps3) and other protein-coding genes (accD, clpP, ycf1, and ycf2) based on the Ka/Ks ratios. Additionally, chloroplast SNP-based phylogeny analyses found that Zingiber was a monophyletic sister branch to Kaempferia and that chloroplast SNPs could be used to identify Zingiber species. The genome resources in our study provide valuable information for the identification and phylogenetic analysis of the genus Zingiber and family Zingiberaceae.