Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Antibiotic resistance in infectious diseases has been a serious problem for the last century, and scientists have focused on discovering new natural antimicrobial agents. Pinus pinea has been used as a natural pharmacotherapeutic agent with antimutagenic, anticarcinogenic, and high antioxidant properties. In this study, GC‐MS and LC‐HR/MS were employed to analyze Pinus pinea L. nut and nutshell extracts. DPPH radical scavenging assay was performed to analyze the antioxidant properties of the extracts, but no activity was determined. GC‐MS analysis showed that linoleic, oleic, and palmitic acids were the three most dominant fatty acids in nut and nutshell extracts, with ratios between 6.75% and 47.06% (v/v). LC‐HR/MS revealed that the nutshell methanol extract had a higher phenolic content than other extracts, with vanillic acid (1.4071 mg/g). Antimicrobial activity assays showed that the minimum inhibitory concentrations (MIC) of the extracts varied between 5.94 and 190 mg/mL, and the most significant inhibition was seen in the nutshell methanol extract (MICs: between 5.94 and 47.5 mg/mL). Consequently, the antimicrobial activity of the extracts can be attributed to the dense fatty acids they contain, and the nutshell methanol extract showed the most potent inhibition related to the abundance of phenolic compounds in the extract.
Antibiotic resistance in infectious diseases has been a serious problem for the last century, and scientists have focused on discovering new natural antimicrobial agents. Pinus pinea has been used as a natural pharmacotherapeutic agent with antimutagenic, anticarcinogenic, and high antioxidant properties. In this study, GC‐MS and LC‐HR/MS were employed to analyze Pinus pinea L. nut and nutshell extracts. DPPH radical scavenging assay was performed to analyze the antioxidant properties of the extracts, but no activity was determined. GC‐MS analysis showed that linoleic, oleic, and palmitic acids were the three most dominant fatty acids in nut and nutshell extracts, with ratios between 6.75% and 47.06% (v/v). LC‐HR/MS revealed that the nutshell methanol extract had a higher phenolic content than other extracts, with vanillic acid (1.4071 mg/g). Antimicrobial activity assays showed that the minimum inhibitory concentrations (MIC) of the extracts varied between 5.94 and 190 mg/mL, and the most significant inhibition was seen in the nutshell methanol extract (MICs: between 5.94 and 47.5 mg/mL). Consequently, the antimicrobial activity of the extracts can be attributed to the dense fatty acids they contain, and the nutshell methanol extract showed the most potent inhibition related to the abundance of phenolic compounds in the extract.
The tendency toward natural herbal products has increased due to the antibiotic resistance developed by microorganisms and the severe side effects of antibiotics commonly used in infectious diseases worldwide. Although antimicrobial studies have been conducted with several species of the Iris genus, this study is the first in the literature to be performed with Iris persica L. subsp. persica aqueous and methanol extracts. In this study, the phenolic content of I. persica was determined by LC–MS/MS analysis, the in vitro antimicrobial activity of I. persica aqueous and methanol extracts was examined, and this study was supported by in silico analysis. Consequently, methanol and aqueous extracts were observed to have inhibitory effects against all tested microorganisms except Candida krusei. Although the MIC values of aqueous extract and methanol extract against Staphylococcus aureus and Klebsiella pneumoniae are the same (22.5 and 11.25 mg/mL, respectively), the inhibitory effect of aqueous extract is generally more potent (MIC value is 11.25 mg/mL for Candida parapsilosis and other bacterial species, and 90 mg/mL for Candida albicans and Candida tropicalis) than that of methanol extract. In silico results showed that hydroxybenzaldeyde, vanillin, resveratrol, isoquercitrin, kaempferol‐3‐glucoside, fisetin, and luteolin were more prone to antifungal activity. Hence, shikimic, gallic, protocatechuic, vanillic, caffeic, o‐coumaric, trans‐ferulic, sinapic acids, and hesperidin were more prone to antibacterial activity. In vitro and in silico results show that the antibacterial activity of our extracts may be higher than the antifungal activity. This preliminary study indicates the anti‐infective potential of I. persica extracts and their usability in medicine and pharmacology.
Tragopogon coelesyriacus is a pharmacotherapeutic herbaceous plant belonging to the Asteraceae family and consumed as a vegetable. Here, the methanolic and water extracts of T. coelesyriacus were obtained from its aboveground parts (stem, leaves, and flowers), and the phytochemical potentials were investigated by LC‐HRMS (liquid chromatography–high resolution mass spectrometry) analysis for the first time. The antibacterial, antifungal, and anticarcinogenic activities of T. coelesyriacus extracts were investigated using experimental and in silico methods. T. coelesyriacus methanol extract revealed remarkable inhibitory activity against Staphylococcus aureus, Pseudomonas aeruginosa, and Klebsiella pneumonia (MICs = 0.83, 1.67, and 1.67 mg/mL, respectively) compared to Escherichia coli and Enterobacter aerogenes (MIC = 53.3 mg/mL). Inhibitory effects of T. coelesyriacus methanolic extracts were also observed in all Candida species tested, with the highest inhibition on Candida krusei (MIC = 0.83 mg/mL), whereas no inhibitory effect was identified from the water extract. Additionally, both T. coelesyriacus methanolic (IC50 = 86 μg/mL) and water (IC50 = 92 μg/mL) extracts revealed significant selective anticarcinogenic effects on AR42J pancreatic cancer cells. HeLa and MDA‐MB‐231 cells were, however, more resilient to methanol and water extract, respectively. In silico analyses further elucidated the noteworthy antibacterial potential of keracyanin chloride on S. aureus MurB enzyme and the remarkable inhibitory potential of naringin on FYN kinase specific for pancreatic cancer (AR42J) development. In conclusion, T. coelesyriacus phytochemicals with antibacterial, antifungal, and anticancer properties were revealed for the first time, and molecular docking studies on potential targets confirmed good agreement with experimental findings. Therefore, the current studies on T. coelesyriacus provide the basis for investigating new pharmaceutical potentials of other Tragopogon members.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.