(1) Background: Adding white vinegar to the batter of a sponge cake without biological fermentation requires the effects of acidification on the batter to be checked, in particular concerning batter-to-crumb transition. (2) Methods: µDSC analyses were carried out on three batters formulated from flour, colza oil, salt, carrot, and water with or without the addition of white vinegar. (3) Results: Wheat, chickpea, and quinoa starches had gelatinization temperatures (TGe) of 60.1, 72.4, and 70.5 °C at batter humidity and gelatinization enthalpies (ΔHGe) of 9.2, 15, and 9.1 J/gdry starch. Due to the effect of the salt and carrot, the corresponding wholemeal batter had TGe of 64.2, 74.1, and 72.4 °C and ΔHGe of 10.5, 15.3, and 10.9 J/gdry starch. Acidified batters at pH 4 saw their TGe decrease, and their enthalpies increase compared to the controls. The calorimetric study of model mixtures revealed three different evolutions of ΔHGe as a function of pH, explained by the isoelectric behavior of flours and/or the attack of starch by acetic acid. (4) Conclusions: These results could be useful for adapting the cooking step of the acid batter in order to produce alternative snacks.