This work presents a soluble oligo(ether)-functionalized propylenedioxythiophene (ProDOT)-based copolymer as a versatile platform for a range of high-performance electrochemical devices, including organic electrochemical transistors (OECTs), electrochromic displays, and energy-storage devices. This polymer exhibits dual electroactivity in both aqueous and organic electrolyte systems, redox stability for thousands of redox cycles, and charge-storage capacity exceeding 80 F g −1 . As an electrochrome, this material undergoes full colored-to-colorless optical transitions on rapid time scales (<2 s) and impressive electrochromic contrast (Δ%T > 70%). Incorporation of the polymer into OECTs yields accumulation-mode devices with an I ON/OFF current ratio of 10 5 , high transconductance without post-treatments, as well as competitive hole mobility and volumetric capacitance, making it an attractive candidate for biosensing applications. In addition to being the first ProDOT-based OECT active material reported to date, this is also the first reported OECT material synthesized via direct(hetero)arylation polymerization, which is a highly favorable polymerization method when compared to commonly used Stille cross-coupling. This work provides a demonstration of how a single ProDOTbased polymer, prepared using benign polymerization chemistry and functionalized with highly polar side chains, can be used to access a range of highly desirable properties and performance metrics relevant to electro chemical, optical, and bioelectronic applications.
Electroactive Polymers[+] Present address: