Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The presence of carbon-chain molecules in the interstellar medium (ISM) has been known since the early 1970s and $>130$ > 130 such species have been identified to date, making up $\sim 43$ ∼ 43 % of the total of detected ISM molecules. They are prevalent not only in star-forming regions in our Galaxy but also in other galaxies. These molecules provide important information on physical conditions, gas dynamics, and evolutionary stages of star-forming regions. Larger species of polycyclic aromatic hydrocarbons (PAHs) and fullerenes (C60 and C70), which may be related to the formation of the carbon-chain molecules, have been detected in circumstellar envelopes around carbon-rich Asymptotic Giant Branch (AGB) stars and planetary nebulae, while PAHs are also known to be a widespread component of the ISM in most galaxies. Recently, two line survey projects toward Taurus Molecular Cloud-1 with large single-dish telescopes have detected many new carbon-chain species, including molecules containing benzene rings. These new findings raise fresh questions about carbon-bearing species in the Universe. This article reviews various aspects of carbon-chain molecules, including observational studies, chemical simulations, quantum calculations, and laboratory experiments, and discusses open questions and how future facilities may answer them.
The presence of carbon-chain molecules in the interstellar medium (ISM) has been known since the early 1970s and $>130$ > 130 such species have been identified to date, making up $\sim 43$ ∼ 43 % of the total of detected ISM molecules. They are prevalent not only in star-forming regions in our Galaxy but also in other galaxies. These molecules provide important information on physical conditions, gas dynamics, and evolutionary stages of star-forming regions. Larger species of polycyclic aromatic hydrocarbons (PAHs) and fullerenes (C60 and C70), which may be related to the formation of the carbon-chain molecules, have been detected in circumstellar envelopes around carbon-rich Asymptotic Giant Branch (AGB) stars and planetary nebulae, while PAHs are also known to be a widespread component of the ISM in most galaxies. Recently, two line survey projects toward Taurus Molecular Cloud-1 with large single-dish telescopes have detected many new carbon-chain species, including molecules containing benzene rings. These new findings raise fresh questions about carbon-bearing species in the Universe. This article reviews various aspects of carbon-chain molecules, including observational studies, chemical simulations, quantum calculations, and laboratory experiments, and discusses open questions and how future facilities may answer them.
Context. Massive star formation is associated with energetic processes, which result in significant gas cooling via far-infrared (IR) lines. Velocity-resolved observations can constrain the kinematics of the gas, allowing the identification of the physical mechanisms responsible for gas heating. Aims. Our aim is to quantify far-IR CO line emission towards high-mass star-forming regions, identify the high-velocity gas component associated with outflows, and estimate the physical conditions required for the excitation of the observed lines. Methods. Velocity-resolved SOFIA/GREAT spectra of 13 high-mass star-forming clumps of various luminosities and evolutionary stages are studied in highly excited rotational lines of CO. For most targets, the spectra are from frequency intervals covering the CO 11−10 and 16−15 lines towards two sources, also the CO 13−12 line was observed with SOFIA/4GREAT. Angular resolutions at the line frequencies range from 14″ to 20″, corresponding to spatial scales of ~0.1–0.8 pc. Radiative transfer models were used to determine the physical conditions giving rise to the emission in the line wings. Results. All targets in our sample show strong high-J CO emission in the far-IR, characterised by broad line wings associated with outflows, thereby significantly increasing the sample of high-mass objects with velocity-resolved high-J CO spectra. Twelve sources show emission in the line wings of the CO 11−10 line (Eu/kB=365 K), and eight sources in the CO 16−15 line (Eu/kB =752 K). The contribution of the emission in the line wings to the total emission ranges from ~28% to 76%, and does not correlate with the envelope mass or evolutionary stage. Gas excitation temperatures cover a narrow range of 120–220 K for the line wings, and 110–200 K for the velocity-integrated line emission, assuming local thermodynamics equilibrium (LTE). For the two additional sources with the CO 13−12 line (Eu/kB=503 K) data, wing emission rotational temperatures of ~130 K and 165 K were obtained using Boltzmann diagrams. The corresponding non-LTE radiative transfer models indicate gas densities of 105−107 cm−3 and CO column densities of 1017−1018 cm-2 in the line wings, similar to physical conditions in deeply embedded low- and high-mass protostars. The velocity-integrated CO line fluxes correlate with the bolometric luminosity over 7 orders of magnitude, including data on the low-mass protostars from the literature. This suggests that similar processes are responsible for the high-J CO excitation over a significant range of physical scales. Conclusions. Velocity-resolved line profiles allow the detection of outflows towards massive star-forming clumps spanning a broad range of evolutionary stages. The lack of clear evolutionary trends suggest that mass accretion and ejection prevail during the entire lifetime of star-forming clumps.
Organic features lead to two distinct types of Class 0/I low-mass protostars: hot corino sources exhibiting abundant saturated complex organic molecules (COMs) and warm carbon-chain chemistry (WCCC) sources exhibiting abundant unsaturated carbon-chain molecules. Some observations suggest that the chemical variations between WCCC sources and hot corino sources are associated with local environments and the luminosity of protostars. We aim to investigate the physical conditions that significantly affect WCCC and hot corino chemistry, as well as to reproduce the chemical characteristics of prototypical WCCC sources and hybrid sources, where both carbon-chain molecules and COMs are abundant. We conducted a gas-grain chemical simulation in collapsing protostellar cores, adopting a selection of typical physical parameters for the fiducial model. By adjusting the values of certain physical parameters, such as the visual extinction of ambient clouds ($A_ V amb $), cosmic-ray ionization rate (zeta ), maximum temperature during the warm-up phase ($T_ max $), and contraction timescale of protostars ($t_ cont $), we studied the dependence of WCCC and hot corino chemistry on these physical parameters. Subsequently, we ran a model with different physical parameters to reproduce scarce COMs in prototypical WCCC sources. The fiducial model predicts abundant carbon-chain molecules and COMs. It also reproduces WCCC and hot corino chemistry in the hybrid source L483. This suggests that WCCC and hot corino chemistry can coexist in some hybrid sources. Ultraviolet (UV) photons and cosmic rays can boost WCCC features by accelerating the dissociation of CO and CH$_4$ molecules. On the other hand, UV photons can weaken the hot corino chemistry by photodissociation reactions, while the dependence of hot corino chemistry on cosmic rays is relatively complex. The value of $T_ max $ does not affect any WCCC features, while it can influence hot corino chemistry by changing the effective duration of two-body surface reactions for most COMs. The long $t_ cont $ can boost WCCC and hot corino chemistry by prolonging the effective duration of WCCC reactions in the gas phase and surface formation reactions for COMs, respectively. The scarcity of COMs in prototypical WCCC sources can be explained by insufficient dust temperatures in the inner envelopes that are typically required to activate hot corino chemistry. Meanwhile, the high zeta and the long $t_ cont $ favors the explanation for scarce COMs in these sources. The chemical differences between WCCC sources and hot corino sources can be attributed to the variations in local environments, such as $A_ V amb $ and zeta , as well as the protostellar property, $t_ cont
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.