Various characterisation techniques were used to study the composition of the glass series 55-P 2 O 5-2Cr 2 O 3-(43-x) Na 2 O-xPbO (with 8 ≤ x ≤ 38; mole %) in terms of chemical durability, IR spectroscopy and scanning electron microscopy (SEM). The change in the dissolution rate as a function of time when the studied glasses were kept submerged in distilled water at 90˚C for 20 days showed an improvement in the chemical durability when Na 2 O content was substituted to PbO content. IR spectroscopy revealed a structural change from ultraphosphate groups to pyrophosphate, orthophosphate and probably ring metaphosphate groups. SEM revealed the existence of two phases: a vitreous phase and a crystalline phase. The presence of Cr 2 O 3 , even in small amounts, seems to play an important role in the formation of crystallites in the glass network. The improved chemical durability is attributed to the replacement of the easily hydrated Na-O-P and P-O-P bonds by covalent and resistant Pb-O-P bands. Both the increase in PbO content and in the Pb + Cr/P ratio causes an increase in the number of covalent Pb-O-P and Cr-O-P bonds, making the glass structure more rigid. The increase of the covalent Pb-O-P bands leads to a clear evolution of the structure and chemical resistance, caused by grain-boundary resistance as a result of glass crystallisation. The IR spectra indicate that the increase in PbO content favours the formation of isolated 3 4 * Corresponding author. N. Beloued et al. 150 limit, the equilibrium between the glass bath and these crystallites is no longer maintained; we notice, once, a decrease in the chemical durability.