Chemical Instability-Induced Wettability Patterns on Superhydrophobic Surfaces
Tianchen Chen,
Faze Chen
Abstract:Chemical instability of liquid-repellent surfaces is one of the nontrivial hurdles that hinders their real-world applications. Although much effort has been made to prepare chemically durable liquid-repellent surfaces, little attention has been paid to exploit the instability for versatile use. Herein, we propose to create hydrophilic patterns on a superhydrophobic surface by taking advantage of its chemical instability induced by acid solution treatment. A superhydrophobic Cu(OH)2 nanoneedle-covered Cu plate … Show more
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.