We have studied the Mukundpura CM2 meteorite for magnetic properties as a function of temperature and magnetic field, as well as its Mössbauer spectrum, at room and low temperatures (up to 5 K). We find that the high temperature paramagnetic phase is followed by two magnetic transitions: a weak transition near 125 K and a strong transition at 8 K. The weak (125 K) magnetic phase can be attributed to complex Fe2+–Fe3+ constituents present in the meteorite. The absence of the characteristic sextet corresponding to magnetite in Mossbauer spectrum indicates that this magnetic phase is not magnetite, which, if present, must be in insignificant amount. The 8 K magnetic ordering is superimposed with weak ferromagnetic ordering, showing spin‐glass transition. The Mössbauer spectrum taken at 5 K substantiates the observed spin‐glassy nature, as very large hyperfine field ~32 T is recorded, causing localized subordering leading to spin‐glass behavior. The Mössbauer spectra also confirm that iron is mainly present in serpentine‐group minerals, both in ferrous and ferric states. The complete serpentinization of basic silicates indicates aggressive hydrous alteration. These results show that the observed spin‐glass signature is a characteristic feature of the cronstedtite phase in CM meteorites. This feature is unique to carbonaceous CM chondrites and could be used for nondestructive, quick, and independent classification of this rare class of meteorites. Furthermore, the absence of olivine and the presence of cronstedtite in Mossbauer spectra show that the degree of aqueous alteration observed is the most severe in Mukundpura CM2 meteorite, as compared to many other CM2 meteorites. The degree of aqueous alteration in CM2 carbonaceous chondrites increases in the sequence: Paris, Murchison, Murray, Mighei, Nogoya, Cold Bokkeveld, and Mukundpura.