“…In the past three decades, atomic scale calculations, by means of molecular dynamics (MD) simulations with interatomic potentials and density functional theory (DFT) calculations, have been extensively used to understand the disordering process in pyrochlores by calculating the intrinsic defects formation energies (Wilde, 1998;Chartier et al, 2002;Minervini et al, 2002;Minervini et al, 2004;Panero et al, 2004;Rushton et al, 2007;Sickafus et al, 2007;Chen et al, 2008;Chen and Tian, 2010;Gunn et al, 2012;Chen et al, 2014;Uberuaga et al, 2014;Li et al, 2015;Li and Kowalski, 2018;Yang et al, 2019), looking at dynamical processes (Chartier et al, 2002;Chartier et al, 2005;Devanathan and Weber, 2005;Todorov et al, 2006;Rushton et al, 2007;Chartier et al, 2009;Devanathan et al, 2010;Xiao et al, 2010;Wang et al, 2013;Uberuaga et al, 2014) (Xiao et al, 2015;Dong et al, 2017), and using models of disordered configurations for DFT calculations Jiang et al, 2009;Solomon et al, 2016;Finkeldei et al, 2017;Pilania et al, 2019;Kowalski, 2020;Matsumoto et al, 2020). The simplest way to study the disorder in a material using atomistic scale calculations is to obtain the formation energies of intrinsic defects in ordered systems, which are generally accessible at a much lower computational cost than completely disordered systems.…”