The catalytic performance of multi-walled carbon nanotubes (MWCNTs) with different surface chemistry was studied in the decomposition reaction of H 2 O 2 at various values of pH and temperature. A comparative analysis of experimental and quantum chemical calculation results is given. It has been shown that both the lowest calculated activation energy (~18.9 kJ/mol) and the highest rate cons tant correspond to the N-containing CNT. The calculated chemisorption energy values correlate with the operation stability of MWCNTs. Based on the proposed quantum chemical model it was found that the catalytic activity of carbon materials in electron tran sfer reactions is controlled by their electron donor capability.