Amorphous alloys structurally deviate from crystalline materials in that they possess unique short-range ordered and long-range disordered atomic arrangement. They are important catalytic materials due to their unique chemical and structural properties including broadly adjustable composition, structural homogeneity, and high concentration of coordinatively unsaturated sites. As chemically reduced metal-metalloid amorphous alloys exhibit excellent catalytic performance in applications such as efficient chemical production, energy conversion, and environmental remediation, there is an intense surge in interest in using them as catalytic materials. This critical review summarizes the progress in the study of the metal-metalloid amorphous alloy catalysts, mainly in recent decades, with special focus on their synthetic strategies and catalytic applications in petrochemical, fine chemical, energy, and environmental relevant reactions. The review is intended to be a valuable resource to researchers interested in these exciting catalytic materials. We concluded the review with some perspectives on the challenges and opportunities about the future developments of metal-metalloid amorphous alloy catalysts.