PZT powders of the composition Pbo.94Sro.o6 (Zr0.53Ti0.47)O3, prepared by spray drying and calcining techniques, were processed to sintered ceramics by conventional cold pressing and sintering at various temperatures and periods between 1000 to 1 250 ° C for 0.5 to 12 h. Sintered ceramics were evaluated for their microstructure and electromechanical properties. Highly dense ceramics having bulk density of the order of 97% of the theoretical value could be obtained after sintering at a considerably lower temperature of 1 000°C in comparison to the 1300°C generally required for powders prepared by conventional ceramic processing. However, the increase in sintering temperature of reactive spray-dried powders causes the entrapment of closed pores as a result of exaggerated grain growth and subsequent pore coarsening thereby leading to a decrease in the bulk density of the ceramics. It has been observed that minor variations in the sintering parameters influence the porosity, grain size and electromechanical properties. Values of the dielectric constant, piezoelectric strain coefficient and electromechanic coupling factor increase with the increase in grain size and decrease with the increase in porosity of the sintered ceramic whereas the dielectric dissipation factor decreases with the increase in sintering temperature.