Hypericum perforatum (HP) is characterized by potent medicinal activity. However, the poor water solubility of many HP constituents limits their therapeutic effectiveness. Self-nanoemulsifying self-nanosuspension loaded with HP (HP.SNESNS) was formulated to improve the bioefficacy of HP. It was prepared using 10% triacetin, 57% Tween 20, and 33% PEG 400 and then incorporated with HP extract (100 mg/mL). HP.SNESNS demonstrated a bimodal size distribution (258.65 ± 29.35 and 9.08 ± 0.01 nm) corresponding to nanosuspension and nanoemulsion, respectively, a zeta potential of -8.03 mV, and an enhanced dissolution profile. Compared to the unformulated HP (100 mg/kg), HP.SNESNS significantly improved cardiac functions by decreasing the serum myocardial enzymes, nitric oxide (NO), and tumor necrosis factor- α (TNF-α) as well as restoring the heart tissue's normal architecture. Furthermore, it ameliorates anxiety, depressive-like behavior, and cognitive dysfunction by decreasing brain TNF-α, elevating neurotransmitters (norepinephrine and serotonin), and brain-derived neurotrophic factor (BDNF). In addition, HP.SNESNS augmented the immunohistochemical expression of cortical and hippocampal glial fibrillary acidic protein (GFAP) levels while downregulating the cortical Bcl-2-associated X protein (Bax) expression levels. Surprisingly, these protective activities were comparable to the HP (300 mg/kg). In conclusion, HP.SNESNS (100 mg/kg) exerted antidepressant and cardioprotective activities in the post-MI depression rat model.
Graphical Abstract