Our research demonstrates that plant material can be produced in the nursery with asymmetrical root systems, which may have utility for reforestation of difficult planting sites characterized by steep slopes and/or windy conditions. Such a root system can be generated using chemical root pruning by applying cupric carbonate (Cu) that can arrest the development of, or cause mortality to, root apical meristems resulting in the formation of new lateral roots with an overall increase in the biomass, length, and volume of the root system. Our objective was to investigate the effect of chemical root pruning on the morphological and architectural traits of adventitious roots produced by poplar cuttings (Populus nigra L.) grown in containers coated with Cu in various symmetrical (Side, Bottom, Side + Bottom) and asymmetrical (half side + half bottom) patterns. After six weeks, roots of the cuttings were extracted from different container depths (Top, Middle, and Bottom) and portions (non-coated, Cu-coated), and analyzed. The root systems reacted to all coating patterns by increasing length, biomass, volume, and average diameters, but magnitude of increase was further affected by depth. In particular, root growth was unaffected at the Top of the container, and length was the highest at the Bottom depth. The Middle depth had a significant increment in both biomass and volume. Also, the root population increased in diameter as a possible response to Cu exposure. Interestingly, in the asymmetrically coated containers this depth response in the non-coated portions was of higher magnitude than in the Cu-coated portions.