Density functional theory (UB3LYP/6-31G(d,p)) was used to determine substituent effects on the singlet-triplet-state energy gap for 21 meta-substituted phenylnitrenium ions. It was found that strongly electron-donating substituents stabilize the triplet state relative to the singlet state. With sufficiently strong meta electron donors (e.g., m,m'-diaminophenylnitrenium ion) the triplet is predicted to be the ground state. Analysis of equilibrium geometries, Kohn-Sham orbital distributions, and Mulliken spin densities for the triplet states of this series of nitrenium ions leads to the conclusion that there are two spatially distinct types of low-energy triplet states. Simple arylnitrenium ions such as phenylnitrenium ions as well as those having electron-withdrawing or weakly donating meta substituents have lowest-energy triplet states that are n,pi in nature. That is, one singly occupied molecular orbital is orthogonal to the plane of the phenyl ring and one is coplanar. These n,pi triplets are generally characterized by large ArNH bond angles (ca. 130-132 degrees ) and an NH bond that is perpendicular to the plane of the phenyl ring. In contrast, meta donor arylnitrenium ions have a lowest-energy triplet state best described as pi,pi. That is, both singly occupied molecular orbitals are orthogonal to the aromatic ring. Such pi,pi states are characterized by NH bonds that are coplanar with the phenyl ring and have ArNH bond angles that are more acute (ca. 110-111 degrees ). These triplet nitrenium ions have electronic structures analogous to those of meta-benzoquinodimethane derivatives.