During recent decades, many tropical reefs have transitioned from coral to macroalgal dominance. These community shifts increase the frequency of algal-coral interactions and may suppress coral recovery following both anthropogenic and natural disturbance. However, the extent to which macroalgae damage corals directly, the mechanisms involved, and the species specificity of algal-coral interactions remain uncertain. Here, we conducted field experiments demonstrating that numerous macroalgae directly damage corals by transfer of hydrophobic allelochemicals present on algal surfaces. These hydrophobic compounds caused bleaching, decreased photosynthesis, and occasionally death of corals in 79% of the 24 interactions assayed (three corals and eight algae). Coral damage generally was limited to sites of algal contact, but algae were unaffected by contact with corals. Artificial mimics for shading and abrasion produced no impact on corals, and effects of hydrophobic surface extracts from macroalgae paralleled effects of whole algae; both findings suggest that local effects are generated by allelochemical rather than physical mechanisms. Rankings of macroalgae from most to least allelopathic were similar across the three coral genera tested. However, corals varied markedly in susceptibility to allelopathic algae, with globally declining corals such as Acropora more strongly affected. Bioassay-guided fractionation of extracts from two allelopathic algae led to identification of two loliolide derivatives from the red alga Galaxaura filamentosa and two acetylated diterpenes from the green alga Chlorodesmis fastigiata as potent allelochemicals. Our results highlight a newly demonstrated but potentially widespread competitive mechanism to help explain the lack of coral recovery on many present-day reefs.allelopathy | chemical ecology | competition | phase shift C orals are structurally complex foundation species that generate and maintain tropical reef biodiversity. However, the direct and interactive effects of climate-induced coral bleaching (1, 2), ocean acidification (2, 3), coral disease (4), coastal overfishing, and eutrophication (5-8) have led to coral decline over wide areas. On many reefs, dramatic declines in coral cover have co-occurred with significant increases in fleshy macroalgae (9-11). Once established, macroalgae can inhibit coral recruitment and decrease herbivore grazing, producing negative feedbacks that reinforce phase shifts and further diminish reef function (12-14). Thus, local (e.g., overfishing) and global (e.g., climate) stresses may interact in complex ways to suppress coral cover, promote algal proliferation, and compromise reef resilience; such complexities provide both challenges and opportunities for managing these dynamic ecosystems (11, 13).As corals decline and macroalgae proliferate, the frequency of algal-coral interactions will increase, potentially affecting the survivorship, growth, and reproduction of remnant adult corals and new coral recruits (12, 13). However, the consequences ...