Rare earth elements (REEs) are crucial for clean energy technologies but are predominantly purified by solvent extraction using strong acids. This work explores two adsorbents with selective chemistry based on lanmodulin-derived peptides. Two membrane adsorber platforms were synthesized: (1) a poly(vinylbenzyl chloride) membrane with a grafted poly(allyl methacrylate) network and (2) a poly(arylene ether sulfone) membrane with allyl pendant groups. Both membrane adsorbers were functionalized with LanM1 peptides via a thiol−ene click reaction. The morphology, surface chemistry, and adsorption of select trivalent lanthanides (La, Ce, Pr, Nd) were characterized in pH 4−5 solutions, mimicking phosphogypsum waste streams. Results from the adsorption experiments indicate that the lanmodulin peptide sequence maintains its ability to bind when it is immobilized on the surface of polymer fibers for some ions. Despite the different adsorbent designs, the measured capacity of both adsorbents is on the same order of magnitude, which may be explained by differences in the surface area of the fibers.