Although diglycidyl ethers of glycols (DEs)—FDA-approved reagents for biomedical applications—were considered unsuitable for the fabrication of chitosan (CH) hydrogels and cryogels, we have recently shown that CH cross-linking with DEs is possible, but its efficiency depends on the nature of the acid used to dissolve chitosan and pH. To elucidate the origin of the low efficiency of chitosan interactions with DEs in acetic acid solutions, we have put forward two hypotheses: (i) DEs are consumed in a side reaction with acetic acid; (ii) DE chain length strongly affects the probability of cross-linking. We then verified them using FT-IR spectroscopy, rheological measurements, and uniaxial compression tests. The formation of esters in acetic acid solutions was confirmed for ethylene glycol diglycidyl ether (EGDE) and poly(ethylene glycol) diglycidyl ether (PEGDE). By the 7th day of gelation at pH 5.5, the G’HCl/G’HAc ratio was 5.1 and 1.5 for EGDE and PEGDE, respectively, indicating that the loss of cross-linking efficiency in acetic acid solution was less pronounced for the long-chain cross-linker. Under conditions of cryotropic gelation, only weak cryogels were obtained from acetic acid solutions at a DE:CH molar ratio of 1:1, while stable cryogels were fabricated at a molar ratio of 1:20 from HCl solutions.