The research, development, and scale-up of the broad-spectrum antibacterial candidate sulopenem are presented. An enabled medicinal chemistry synthesis of this active pharmaceutical ingredient was utilized for Phase 1 and early Phase 2 manufacture but was not conducive to larger scale. The limitations associated with the first-generation synthesis were partially addressed in an improved second-generation synthesis of the target molecule where the penem ring is constructed via a modified Eschenmoser sulfide contraction sequence. Other highlights of the second-generation process include an improved synthesis of an important trithiocarbonate intermediate and a superior process for Pd-catalyzed deallylation of the penultimate ester to obtain low levels of residual palladium.