An ideal platinum-based delivery device would be one that selectively targets cancerous cells, can be systemically delivered, and is non-toxic to normal cells. It would be beneficial to provide drug delivery devices for platinum-based anticancer agents that exhibit high drug transport capacity, good water solubility, stability during storage, reduced toxicity, and enhanced anticancer activity in vivo. However, the challenges for developing drug delivery devices include carrier stability in vivo, the method by which extracellular or intracellular drug release is achieved, overcoming the various mechanisms of cell resistance to drugs, controlled drug release to cancer cells, and platinum drug bioavailability. There are many potential candidates under investigation including cucurbit[n]urils, cyclodextrins, calix[n]arenes, and dendrimers, with the most promising being those that are synthetically adaptable enough to attach to targeting agents.