Eucalyptus plants have attracted the attention of researchers and environmentalists worldwide because they are a rapidly growing source of wood and a source of oil used for multiple purposes. The main and the most important oil component is 1,8-cineole (eucalyptol: 60%–85%). This review summarizes the literature reported to date involving the use of 1,8-cineole for the treatment of disorders. Additionally, we describe our efforts in the use of eucalyptol as a solvent for the synthesis of O,S,N-heterocycles. Solvents used in chemistry are a fundamental element of the environmental performance of processes in corporate and academic laboratories. Their influence on costs, safety and health cannot be neglected. Green solvents such as bio-based systems hold considerable additional promise to reduce the environmental impact of organic chemistry. The first section outlines the process leading to our discovery of an unprecedented solvent and its validation in the first coupling reactions. This section continues with the description of its properties and characteristics and its reuse as reported in the various studies conducted. The second section highlights the use of eucalyptol in a series of coupling reactions (i.e., Suzuki–Miyaura, Sonogashira–Hagihara, Buchwald–Hartwig, Migita–Kosugi–Stille, Hiyama and cyanation) that form O,S,N-heterocycles. We describe the optimization process applied to reach the ideal conditions. We also show that eucalyptol can be a good alternative to build heterocycles that contain oxygen, sulfur and nitrogen. These studies allowed us to demonstrate the viability and potential that bio solvents can have in synthesis laboratories.