The present study reports the in vivo and in vitro identification and characterization of metabolites of fluvastatin, the 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase inhibitor, using liquid chromatography-mass spectrometry (LC-MS). In vitro studies were conducted by incubating the drug with human liver microsomes and rat liver microsomes. In vivo studies were carried out by administration of the drug in the form of suspension to the Sprague-Dawley rats followed by collection of urine, faeces and blood at different time points up to 24 h. Further, samples were prepared by optimized sample preparation method, which includes freeze liquid extraction, protein precipitation and solid phase extraction. The extracted and concentrated samples were analysed using ultrahigh-performance liquid chromatography-quadruple time-of-flight tandem mass spectrometry. A total of 15 metabolites were observed in urine, which includes hydroxyl, sulphated, desisopropyl, dehydrogenated, dehydroxylated and glucuronide metabolites. A few of the metabolites were also present in faeces and plasma samples. In in vitro studies, a few metabolites were observed that were also present in in vivo samples. All the metabolites were characterized using ultrahigh-performance liquid chromatography-quadruple time-of-flight tandem mass spectrometry in combination with accurate mass measurement. Finally, in silico toxicity studies indicated that some of the metabolites show or possess carcinogenicity and skin sensitization. Several metabolites that were identified in rats are proposed to have toxicological significance on the basis of in silico evaluation. However, these metabolites are of no human relevance. Copyright © 2017 John Wiley & Sons, Ltd.