The aim of this study is to find the relationship between HIV-1 activity and chemical structure for 2-Pyridinone derivatives by using the Electron-Topological Method (ETM). Data for ETM were obtained quantum mechanical calculations. Quantum chemical calculations were performed after the conformational analysis. By using the data obtained from quantum chemical calculation results ETM were perfomed and pharmacophere and anti-pharmacophere fragments for the HIV-1-specific Reverse Transcriptase inhibitors were explained. Conformational analysis and quantum-chemical calculations of 2-pyridinone derivatives were carried out by using B3LYP method with basis set of the 6-311G(d,p) in order to determine molecular properties. The descriptors of HOMO, LUMO, HOMO-LUMO energy gap, chemical hardness, chemical softness, electro-negativity, chemical potential, dipole moment etc. were calculated and tabulated in order to employed in statistical analyses that are Linear Discriminant Analysis (LDA) and Artificial Neural Networks (ANNs). By doing so, the linear and non-linear sections of data structure are investigated and their corresponding descriptors having impact on dependent variable has been found. We see from the fragment properties atoms found in benzoxazole groups give rise to activity of the molecules, and atoms in the naphthyl groups causes breaking the activity.