The 1,8-Diazaanthracene-2,9,10-triones, their 5,8-dihydro derivatives, and 1,8-diazaanthracene-2,7,9,10-tetraones, structurally related to the diazaquinomycin family of natural products, were synthesized in a regioselective fashion employing Diels–Alder strategies. These libraries were studied for their cytotoxicity in a variety of human cancer cell lines in order to establish structure–activity relationships. From the results obtained, we conclude that some representatives of the 1,8-diazaanthracene-2,9,10-trione framework show potent and selective cytotoxicity against solid tumors. Similar findings were made for the related 1-azaanthracene-2,9,10-trione derivatives, structurally similar to the marcanine natural products, which showed improved activity over their natural counterparts. An enantioselective protocol based on the use of a SAMP-related chiral auxiliary derived was developed for the case of chiral 5-substituted 1,8-diazaanthracene-2,9,10-triones, and showed that their cytotoxicity was not enantiospecific.