The 2’-deoxynucleoside 5’-triphosphate (dNTP) analogs with modifications in the triphosphate chain have been used as nucleotide probes in various biochemical and structural studies. Here we report synthesis and characterization of a complete set of α,β-methylene-2’-dNTPs (α,β-m-dNTP; N = A, C, T, G, 12-15), in which the α,β-oxygen linkage of natural dNTP was replaced isosterically by a methylene group. These nucleotides were designed to be non-cleavable DNA polymerase substrates. Our synthesis process entails preparation of 2’-deoxynucleoside 5’-diphosphate precursors by nucleophilic coupling of 5’-tosyl nucleosides and methylene-diphosphate, and a subsequent enzymatic γ-phosphorylation. All four synthesized α,β-m-dNTPs were found to be potent inhibitors of polymerase β with Ki values ranging from 1-5 μM. During preparation of the dG and dT derivatives of α,β-methylene diphosphate, we isolated significant amounts of 3,5’-anhydro-2’-deoxyguanosine (cyclo-dG, 16) and 2,5’-anhydro-2’-deoxythymidine (cyclo-dT, 17), respectively. These novel 2’-deoxycyclonucleosides were formed via a base-catalyzed deprotonation of the imino proton (N1-H and N3-H), followed by an intramolecular cyclization (N3 → C5’ and O2 → C5’, respectively). In acidic solution, the cyclonucleosides underwent glycolysis at N9, followed by complete depurination at N3. In the case of cyclo-dG, there existed an equilibrium between glycolysis and deglycolysis at the glycosidic linkage prior to complete depurination. When exposed to alkaline conditions, cyclo-dG underwent an oxidative deamination at C2 to produce 3,5’-anhydro-2’-deoxyxanthosine (cyclo-dX, 19), whereas cyclo-dT was hydrolyzed exclusively to dT via cleavage at the 2,5’-ether linkage.