A hyperthermal nozzle was utilized to study the thermal decomposition of propionaldehyde, CH3CH2CHO, over a temperature range of 1073-1600 K. Products were identified with two detection methods: matrix-isolation Fourier transform infrared spectroscopy and photoionization mass spectrometry. Evidence was observed for four reactions during the breakdown of propionaldehyde: α-C-C bond scission yielding CH3CH2, CO, and H, an elimination reaction forming methylketene and H2, an isomerization pathway leading to propyne via the elimination of H2O, and a β-C-C bond scission channel forming methyl radical and (•)CH2CHO. The products identified during this experiment were CO, HCO, CH3CH2, CH3CH═C═O, H2O, CH3C≡CH, CH3, H2C═C═O, CH2CH2, CH3CH═CH2, HC≡CH, CH2CCH, H2CO, C4H2, C4H4, and CH3CHO. The first eight products result from primary or bimolecular reactions involving propionaldehyde while the remaining products occur from reactions including the initial pyrolysis products. While the pyrolysis of propionaldehyde involves reactions similar to those observed for acetaldehyde and butyraldehyde in recent studies, there are a few unique products observed which highlight the need for further study of the pyrolysis mechanism.