The accurate measurement of moisture content in pure gases and in gas mixtures, such as air, has great relevance in many industrial processes. In the present study, graphene oxide reduced through a mild alkaline treatment was used as a humidity sensing material to fabricate a flexible chemiresistive device operating at room temperature. The active layer was deposited by solution casting on a substrate of bimatted polyester, previously coated with inkjet-printed interdigitated electrodes made of silver. Structural investigations were performed by means of X-ray diffraction, Raman spectroscopy, and FTIR spectroscopy, while the optical properties were investigated using UV-VIS absorption and photoluminescence excitation spectroscopy. With increasing relative hu-midity from 0 to 80%, the electrical resistance decreased from about 1.4 GΩ to 2.5 MΩ. The ex-traordinarily large range of resistance values highlights the ultrahigh humidity sensitivity of re-duced graphene oxide, which acquires a fair amount of electrical conductivity after physisorption of water molecules but results in a highly resistive material in dry air. The high sensitivity at room temperature, the response’s repeatability, the wide relative humidity range detected, and the fast response time are the main advantages of the proposed humidity sensor, while the presence of some hysteresis, mainly at low relative humidity, and the recovery time need further improve-ment. Finally, the sensing mechanisms are briefly discussed.