MXenes, a novel class of two-dimensional (2D) materials, have attracted considerable attention in various fields, especially in drug delivery, wound healing, bone tissue engineering, biosensing, and cancer treatment. Thanks to their remarkable physicochemical properties, MXenes hold great promise for biomedical applications. Concurrently, hydrogels composed of polymers have been extensively utilized in biomedical contexts. The unique properties of MXenes facilitate their integration into various bioactive hydrogels with enhanced functions and properties, thereby endowing the composites with multifunctional capabilities. MXene-reinforced polymer hydrogels (MRPHs) synergistically combine the advantageous characteristics of both MXenes and hydrogels, making them highly adaptable for integration with other theranostic strategies in medical applications. In this comprehensive review, we demonstrate recent advances in the design and synthesis of MRPHs for biomedical applications. Specifically, we introduce the unique functions and properties of MRPHs and analyze the methods for tailoring the functions of MRPHs by incorporating them with other active components, including functional molecules, 2D materials, metal ions, natural polymers, and drugs/genes. We then discuss the biomedical applications of the designed bioactive MRPHs in wound healing, tissue engineering, biosensors, and cancer therapy. We hope that this work provides valuable guidance and inspiration for readers to develop novel MRPHs for advanced applications.