In this work, we present a comprehensive investigation of the entrapment of laccase, a biotechnologically relevant enzyme, into levan-based nanoparticles (LNPs). The entrapment of laccase was achieved concomitantly with the synthesis of LNP, catalyzed by a truncated version of a levansucrase from Leuconostoc mesenteroides. The study aimed to obtain a biocompatible nanomaterial, able to entrap functional laccase, and characterize its physicochemical, kinetic and thermal stability properties. The experimental findings demonstrated that a colloidal stable solution of spherically shaped LNP, with an average diameter of 68 nm, was obtained. An uniform particle size distribution was observed, according to the polydispersity index determined by DLS. When the LNPs synthesis was performed in the presence of laccase, biocatalytically active nanoparticles with a 1.25-fold larger diameter (85 nm) were obtained, and a maximum load of 243 μg laccase per g of nanoparticle was achieved. The catalytic efficiency was 972 and 103 (μM·min)-1, respectively, for free and entrapped laccase. A decrease in kcat values (from 7050 min-1 to 1823 min-1) and an increase in apparent Km (from 7.25 μM to 17.73 μM) was observed for entrapped laccase, compared to the free enzyme. The entrapped laccase exhibited improved thermal stability, retaining 40% activity after 1 h-incubation at 70°C, compared to complete inactivation of free laccase under the same conditions, thereby highlighting the potential of LNPs in preserving enzyme activity under elevated temperatures. The outcomes of this investigation significantly contribute to the field of nanobiotechnology by expanding the applications of laccase and presenting an innovative strategy for enhancing enzyme stability through the utilization of fructan-based nanoparticle entrapments.