With the rapid development of society, all kinds of non-renewable energy resources are constantly developed and utilized, energy storage is one of the best ways to solve the energy shortage. In this study , levulinic acid (LA) and 1,4 butanediol (BDO) were used to synthesize a novel polyol ester (LABDO) by biological and chemical methods. The biological method exhibited excellent performance in the synthesis process, where 87.5% of LABDO yield under optimal conditions, while the chemical method had more byproducts and higher energy consumption. Finally, the thermal properties of the obtained phase change materials (PCMs) were evaluated. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) showed that the melting temperature of LABDO was 50.51°C, the latent heat of melting was 156.1J/g, and the pyrolysis temperature was 150-160°C. Compared with traditional paraffin wax, the prepared PCMs have suitable phase transition temperature, higher latent heat of melting and better thermal stability. The thermal conductivity can be increased to 0.34W·m-1· k-1 by adding expanded graphite. In summary, LABDO can be used as low temperature phase change energy storage materials.