Current evidence indicates that the abnormal expression of chemokines or their receptors, such as CXC chemokine receptor-4 (CXCR4), is positively correlated with the development, progression and metastasis of tumor cells. However, the role of CXCR4 in neuroblastoma and its response to chemotherapy remain largely unclear. In addition, forkhead box 3 (Foxp3), a transcription factor associated with T cell tolerance, is expressed in tumor cells and plays a role in the immune evasion of cancers. The present study aimed to examine the expression of CXCR4 and Foxp3 in the LAN-5 and SK-N-SH neuroblastoma cell lines. The effects of chemotherapy drugs, cyclophosphamide (CTX) and pirarubicin (THP), on the expression of these two genes were also investigated. Our findings indicated that CXCR4 and Foxp3 were highly expressed in LAN-5 and SK-N-SH cells. Following treatment with CTX and THP, the protein expression of CXCR4 in LAN-5 and SK-N-SH cells was significantly decreased (P<0.05). The expression of Foxp3 in LAN-5 cells was also significantly downregulated by CTX and THP treatment (P<0.05). Therefore, the high expression of CXCR4 and Foxp3 in LAN-5 and SK-N-SH cells and their subsequent downregulation following administration of the chemotherapy agents suggests that the chemokine receptors, CXCR4 and Foxp3, may be involved in the metastasis and tumor evasion of neuroblastoma. Further studies should investigate the expression of CXCR4 and Foxp3 in patient samples.