Herbal products containing Korean Angelica gigas Nakai (AGN) root extract are marketed as dietary supplements for memory enhancement, pain killing, and female menopausal symptom relief. We have shown anti-cancer activity of AGN supplement in mouse models. To facilitate human anti-cancer translational research, we characterized the tissue distribution of AGN marker pyranocoumarin compounds decursin (D) and decursinol angelate (DA) (~50% in AGN) and their metabolite decursinol (DOH), assessed safety of sub-chronic AGN dietary exposure in mice, and explored the impacts on the plasma aqueous metabolites and prostate transcriptome. The data show that after a gavage dose, plasma contained readily detectable DOH, but little D and DA, mirroring patterns in the liver. Extra-hepatic tissues retained greater level of DA and D than liver. For sub-chronic exposures, male mice were provided ad libitum AIN93M-pellet diet with 0.5 and 1% AGN for 6 weeks. No adverse effect was observed on plasma biochemistry markers of liver and kidney integrity in spite of their enlargement. Histopathological examination of liver, kidney and other visceral organs did not reveal tissue abnormalities. Metabolomic assessment of plasma from the mice fed 1%-AGN diet suggested metabolic shifts of key amino acids especially methionine-cysteine cycle, purine cycle and glycolysis-citrate cycle. Prostate transcriptomic profiling identified gene signature changes of metabolisms of drugs, lipids and cellular energetics, neuro-muscular features, immunity and inflammation, and tumor suppressor/oncogene balance. The safety profile was corroborated with daily i.p. injection of AGN extract (200 mg/kg) for 4 weeks, which resulted in much greater systemic pyranocoumarin exposure than dietary route.