Three new diboronic acid-substituted bisquinolinium salts were synthesized, structurally described by single-crystal X-ray diffraction, and studied in-depth as fluorescent receptors for six monosaccharides and two open-chain polyols in water at physiological pH. The dicationic pyridine-2,6-dicarboxamide-based receptors contain two N-quinolinium rings as the fluorescent units covalently linked to three different isomers of phenylboronic acid (ortho, 2; meta, 3; and para, 4) as chelating binding sites for polyols. Additions of glucose/fructose in the micromolar concentration range to receptors 2 and 3 induce significant fluorescence changes, but in the presence of arabinose, galactose, mannose, and xylose, only modest optical changes are observed. This optical change is attributed to a static photoinduced electron transfer mechanism. The meta-diboronic receptor 3 exhibited a high affinity/selectivity toward glucose (K = 3800 M −1 ) over other monosaccharides including common interfering species such as fructose and mannitol. Based on multiple spectroscopic tools, electrospray ionization high-resolution mass spectrometry, crystal structures, and density functional theory calculations, the binding mode between 3 and glucose is proposed as a 1:1 complex with the glucofuranose form involving a cooperative chelating diboronate binding. These results demonstrate the usefulness of a new set of cationic fluorescent diboronic acid receptors with a strong ability for optical recognition of glucose in the sub-millimolar concentration range.