We study the motion of a heavy tracer particle weakly coupled to a dense, weakly interacting Bose gas exhibiting Bose-Einstein condensation. In the so-called mean-field limit, the dynamics of this system approaches one determined by nonlinear Hamiltonian evolution equations. We prove that if the initial speed of the tracer particle is above the speed of sound in the Bose gas, and for a suitable class of initial states of the Bose gas, the particle decelerates due to emission of Cherenkov radiation of sound waves, and its motion approaches a uniform motion at the speed of sound, as time t tends to ∞.