Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Context. Galaxy clusters grow through the accretion of mass over cosmic time. Their observed properties are then shaped by how baryons distribute and energy is diffused. Thus, a better understanding of spatially resolved, projected thermodynamic properties of the intra-cluster medium (ICM) may provide a more consistent picture of how mass and energy act locally in shaping the X-ray observed quantities of these massive virialized or still collapsing structures. Aims. We study the perturbations in the temperature (and density) distribution to evaluate and characterize the level of inhomogeneities and the related dynamical state of the ICM. Methods. We obtain and analyze the temperature and density distribution for 28 clusters (2.4 × 1014 M⊙ < M500 < 1.2 × 1015 M⊙; 0.07 < z < 0.45) selected from the CHEX-MATE sample. We use these spatially resolved two-dimensional distributions to measure the global and radial scatter and identify the regions that deviate the most from the average distribution. During this process, we introduce three dynamical state estimators and produce “clean” temperature profiles after removing the most deviant regions. Results. We find that the temperature distribution of most of the clusters is skewed towards high temperatures and is well described by a log-normal function. There is no indication that the number of regions deviating more than 1σ from the azimuthal value is correlated with the dynamical state inferred from morphological estimators. The removal of these regions leads to local temperature variations up to 10–20% and an average increase of ∼5% in the overall cluster temperatures. The measured relative intrinsic scatter within R500, σT, int/T, has values of 0.17−0.05+0.08, and is almost independent of the cluster mass and dynamical state. Comparing the scatter of temperature and density profiles to hydrodynamic simulations, we constrain the average Mach number regime of the sample to Ṁ3D = 0.36−0.09+0.16. We infer the ratio between the energy in turbulence and the thermal energy, and translate this ratio in terms of a predicted hydrostatic mass bias b, estimating an average value of b ∼ 0.11 (covering a range between 0 and 0.37) within R500. Conclusions. This study provides detailed temperature fluctuation measurements for 28 CHEX-MATE clusters which can be used to study turbulence, derive the mass bias, and make predictions on the scaling relation properties.
Context. Galaxy clusters grow through the accretion of mass over cosmic time. Their observed properties are then shaped by how baryons distribute and energy is diffused. Thus, a better understanding of spatially resolved, projected thermodynamic properties of the intra-cluster medium (ICM) may provide a more consistent picture of how mass and energy act locally in shaping the X-ray observed quantities of these massive virialized or still collapsing structures. Aims. We study the perturbations in the temperature (and density) distribution to evaluate and characterize the level of inhomogeneities and the related dynamical state of the ICM. Methods. We obtain and analyze the temperature and density distribution for 28 clusters (2.4 × 1014 M⊙ < M500 < 1.2 × 1015 M⊙; 0.07 < z < 0.45) selected from the CHEX-MATE sample. We use these spatially resolved two-dimensional distributions to measure the global and radial scatter and identify the regions that deviate the most from the average distribution. During this process, we introduce three dynamical state estimators and produce “clean” temperature profiles after removing the most deviant regions. Results. We find that the temperature distribution of most of the clusters is skewed towards high temperatures and is well described by a log-normal function. There is no indication that the number of regions deviating more than 1σ from the azimuthal value is correlated with the dynamical state inferred from morphological estimators. The removal of these regions leads to local temperature variations up to 10–20% and an average increase of ∼5% in the overall cluster temperatures. The measured relative intrinsic scatter within R500, σT, int/T, has values of 0.17−0.05+0.08, and is almost independent of the cluster mass and dynamical state. Comparing the scatter of temperature and density profiles to hydrodynamic simulations, we constrain the average Mach number regime of the sample to Ṁ3D = 0.36−0.09+0.16. We infer the ratio between the energy in turbulence and the thermal energy, and translate this ratio in terms of a predicted hydrostatic mass bias b, estimating an average value of b ∼ 0.11 (covering a range between 0 and 0.37) within R500. Conclusions. This study provides detailed temperature fluctuation measurements for 28 CHEX-MATE clusters which can be used to study turbulence, derive the mass bias, and make predictions on the scaling relation properties.
The goal of this work is to devise a description of the enrichment process in large-scale structure that explains the available observations and makes predictions for future measurements. We took a spartan approach to this study, employing observational results and algebra to connect stellar assembly in star-forming halos with metal enrichment of the intra-cluster and group medium. On one hand, our construct is the first to provide an explanation for much of the phenomenology of metal enrichment in clusters and groups. It sheds light on the lack of redshift evolution in metal abundance, as well as the small scatter of metal abundance profiles, the entropy versus abundance anti-correlation found in cool core clusters, and the so-called Fe conundrum, along with several other aspects of cluster enrichment. On the other hand, it also allows us to infer the properties of other constituents of large-scale structure. We find that gas that is not bound to halos must have a metal abundance similar to that of the ICM and only about one-seventh to one-third of the Fe in the Universe is locked in stars. A comparable amount is found in gas in groups and clusters and, lastly and most importantly, about three-fifths of the total Fe is contained in a tenuous warm or hot gaseous medium in or between galaxies. We point out that several of our results follow from two critical but well motivated assumptions: 1) the stellar mass in massive halos is currently underestimated and 2) the adopted Fe yield is only marginally consistent with predictions from synthesis models and SN rates. One of the most appealing features of the work presented here is that it provides an observationally grounded construct where vital questions on chemical enrichment in the large-scale structure can be addressed. We hope that it may serve as a useful baseline for future works.
The determination of the mass of galaxy clusters from observations is subject to systematic uncertainties. Beyond the errors due to instrumental and observational systematic effects, in this work we investigate the bias introduced by modelling assumptions. In particular, we consider the reconstruction of the mass of galaxy clusters from convergence maps employing spherical mass density models. We made use of The Three Hundred simulations, selecting clusters in the same redshift and mass range as the NIKA2 Sunyaev-Zel’dovich Large Programme sample: $3 M odot 10$ and $0.5 z 0.9$. We studied different modelling and intrinsic uncertainties that should be accounted for when using the single cluster mass estimates for scaling relations. We confirm that the orientation of clusters and the radial ranges considered for the fit have an important impact on the mass bias. The effect of the projection adds uncertainties to the order of 10<!PCT!> to 16<!PCT!> to the mass estimates. We also find that the scatter from cluster to cluster in the mass bias when using spherical mass models is less than 9<!PCT!> of the true mass of the clusters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.