Three decades ago, a landmark paper by Alvarez et al. [1980] proposed that an asteroid impact 65.5 million years ago was the cause of the mass extinction of about 75% of species, including the dinosaurs, at the boundary between the Cretaceous and Paleogene periods (K‐Pg), formerly known as the Cretaceous‐Tertiary (K‐T) boundary. Alvarez et al. used geochemical studies on carbonate sequences from Italy, Denmark, and New Zealand to study the boundary layer, which was enriched in iridium and other platinum group elements (PGEs) at concentrations well above background levels. They associated these enrichments with the collision of an asteroid that injected large amounts of pulverized debris into the atmosphere, resulting in blockage of solar radiation, global cooling, and a shutdown of photosynthesis.