Background
Female athletes are four to six times more likely to sustain an anterior cruciate ligament (ACL) injury than male athletes. Jump-landing biomechanics are influenced by maturation, with post-pubertal female athletes at a heightened risk of ACL injuries.
Objective
The aim of our systematic review was to identify and summarise the current evidence regarding the changes in kinematic and kinetic risk factors associated with ACL injuries during jump-landing tasks in female athletes at various stages of maturity.
Methods
A systematic search was conducted in PubMed, CINAHL, Web of Science, SPORTDiscus, EMBASE and Scopus. Articles were included if they: (1) conducted the research on uninjured female athletes with no restriction on playing level/experience; (2) provided information regarding the stage of the maturity and the scale used for estimating the maturity status of the participants; and (3) reported a biomechanical risk factor associated with ACL injuries during jump-landing tasks across at least two different maturity groups (e.g. pre-pubertal vs post-pubertal).
Results
Sixteen articles involving 2323 female athletes were included in our review. A total of 12 kinematic and 8 kinetic variables were identified across these studies. Of the 12 kinematic variables reported in our review, we found strong evidence for higher peak knee abduction angle in post-pubertal female individuals compared with pre-pubertal girls (p < 0.05). With regard to the 8 kinetic variables, we found strong evidence for lower relative peak vertical ground reaction force, higher external knee abduction moment and internal rotation moment in post-pubertal compared with pre-pubertal athletes. The strength of evidence for the remaining kinematic and kinetic variables ranged from conflicting to moderate and, in some instances, could not be determined.
Conclusions
Our study provides an overview of the changes in biomechanical risk factors in female athletes during jump-landing tasks at various stages of maturity. We found moderate-to-limited evidence for most kinematic and kinetic variables, highlighting the need for further research.