The current paradigm holds that cyanobacteria, which evolved oxygenic photosynthesis more than 2 billion years ago, are still the major light harvesters driving primary productivity in open oceans. Here we show that tiny unicellular eukaryotes belonging to the photosynthetic lineage of the Haptophyta are dramatically diverse and ecologically dominant in the planktonic photic realm. The use of Haptophyta-specific primers and PCR conditions adapted for GC-rich genomes circumvented biases inherent in classical genetic approaches to exploring environmental eukaryotic biodiversity and led to the discovery of hundreds of unique haptophyte taxa in 5 clone libraries from subpolar and subtropical oceanic waters. Phylogenetic analyses suggest that this diversity emerged in Paleozoic oceans, thrived and diversified in the permanently oxygenated Mesozoic Panthalassa, and currently comprises thousands of ribotypic species, belonging primarily to low-abundance and ancient lineages of the ''rare biosphere.'' This extreme biodiversity coincides with the pervasive presence in the photic zone of the world ocean of 19 -hexanoyloxyfucoxanthin (19-Hex), an accessory photosynthetic pigment found exclusively in chloroplasts of haptophyte origin. Our new estimates of depth-integrated relative abundance of 19-Hex indicate that haptophytes dominate the chlorophyll a-normalized phytoplankton standing stock in modern oceans. Their ecologic and evolutionary success, arguably based on mixotrophy, may have significantly impacted the oceanic carbon pump. These results add to the growing evidence that the evolution of complex microbial eukaryotic cells is a critical force in the functioning of the biosphere.Haptophyta Í photosynthesis Í protistan biodiversity Í eukaryotic biodiversity O xygenic photosynthesis, the most complex and energetically powerful molecular process in biology, originated in cyanobacteria more than 2 billion years ago in Archean oceans (1). Marine photosynthesis still contributes Ï·50% of total primary production on Earth (2). This revolutionary process was integrated, at least once, into an ancestral phagotrophic eukaryotic lineage through the evolution of chloroplasts, which themselves were redistributed to a large variety of aquatic eukaryote lineages via permanent secondary and tertiary endosymbioses (3). Despite this evolutionary trend from photosynthetic prokaryotes to eukaryotes, particularly visible in today's coastal oceans where microalgae such as diatoms and dinoflagellates are omnipresent, cyanobacteria have been repeatedly claimed as the champions of photosynthesis in open ocean waters (4). This hypothesis followed the introduction of flow cytometry and molecular genetic approaches to biological oceanography in the 1980s, which revealed astonishing concentrations of minute cyanobacterial cells of the genera Procholorococcus and Synechococcus in marine waters (5). The physiology, ecology, and functional and environmental genomics of these prokaryotes are subjects of ongoing intensive study (6).Several lines of e...