Whether any non-human animal can attribute mental states to others remains the subject of extensive debate. This despite the fact that several species have behaved as if they have a 'theory of mind' in various behavioral tasks. In this paper, we review the reasons of skeptics for their doubts: That existing experimental setups cannot distinguish between 'mind readers' and 'behavior readers', that results that seem to indicate 'theory of mind' may come from studies that are insufficiently controlled, and that our own intuitive biases may lead us to interpret behavior more 'cognitively' than is necessary. The merits of each claim and suggested solution are weighed. The conclusion is that while it is true that existing setups cannot conclusively demonstrate 'theory of mind' in non-human animals, focusing on this fact is unlikely to be productive. Instead, the more interesting question is how sophisticated their social reasoning can be, whether it is about 'unobservable inner experiences' or not. Therefore, it is important to address concerns about the setup and interpretation of specific experiments. To alleviate the impact of intuitive biases, various strategies have been proposed in the literature. These include a deeper understanding of associative learning, a better knowledge of the limited 'theory of mind' humans actually use, and thinking of animal cognition in an embodied, embedded way; that is, being aware that constraints outside of the brain, and outside of the body, may naturally predispose individuals to produce behavior that looks smart without requiring complex cognition. To enable this kind of thinking, a powerful methodological tool is advocated: Computational modeling, namely agent-based modeling and, particularly, cognitive modeling. By explicitly simulating the rules and representations that underlie animal E. van der Vaart (B) · C. K. Hemelrijk Behavioural Ecology and Self-Organisation, University of Groningen, Groningen, The Netherlands e-mail: e.e.van.der.vaart@rug.nl E. van der Vaart Institute of Artificial Intelligence, University of Groningen, Groningen, The Netherlands 123 336 Synthese (2014) 191:335-354 performance on specific tasks, it becomes much easier to look past one's own biases and to see what cognitive processes might actually be occurring.