The COVID-19 pandemic highlighted the limitations of urban public health emergency response capabilities. Taking Wuhan as an example, this study used breakpoint regression, kernel density analysis, overlay analysis, and accessibility analysis from Stata and ArcGIS, and divided epidemic prevention facilities into the basic epidemic prevention facilities (hospitals), and the emergency epidemic prevention facilities (mobile cabin hospitals) for further analysis. The results showed that over 70% of the basic epidemic prevention facilities in Wuhan were located in high density population areas. On the contrary, most of the emergency epidemic prevention facilities were located in low density population areas. The local treatment effect of the implementation of the emergency epidemic prevention facility policy is about 1, indicating that there was a significant impact of emergency epidemic prevention facilities on outbreak control, which passed the bandwidth test. What’s more, the analysis of the accessibility of residential points revealed that more than 67.3% of people from the residential points could arrive at the epidemic prevention facilities within 15 min, and only 0.1% of them took more than 20 min to arrive. Therefore, the epidemic prevention facilities can effectively curb the spread of the epidemic, and people from residential areas can quickly get there. This study summarized the spatial characteristics of epidemic prevention facilities in Wuhan and analyzed the importance of them, thus providing a new perspective for future research on upgrading the city’s comprehensive disaster prevention system.