Abstract:Word embedding is a fundamental natural language processing task which can learn feature of words. However, most word embedding methods assign only one vector to a word, even if polysemous words have multi-senses. To address this limitation, we propose SememeWSD Synonym (SWSDS) model to assign a different vector to every sense of polysemous words with the help of word sense disambiguation (WSD) and synonym set in OpenHowNet. We use the SememeWSD model, an unsupervised word sense disambiguation model based on O… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.